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PERMANENT COMPRESSION OF SILICATE GLASSES

for the refractive index-volume correlation for
a given substance. Anderson and Schreiber
[1965] have shown that a plot of mean re-
fractive index versus uncompressed density for

silicates of different composition also obeys -

cquation 2, with a value of 8 close to zero:
this does not require, however, that B have
such a value, or be the same, for compression
of the individual silicate phases.

Since the values of 8 for diopside and albite
glass are not known, calculations for these
alasses were made by using both equation 3 and
equation 4 as limiting laws for the n-V rela-
tion. For Si0. glass, however, the value of f3
can be evaluated from the recent precise data
of Arndt and Stéfiler [1968] on =z and p
(density) of permanently densified silica glass
obtained at pressures and temperatures to 60 kb
and 700°C. They observed an approximately
linear relationship over their entire range of
densities (p = 2.200 to 2.526); their data on
120 samples give a least-squares relationship
n = 0196p + 1.026 (J. Arndt, personal com-
munication). (The older data of Cohen and
Roy [1962] on eleven samples give the same
relationship.) Using their data with equation 2
sives the overlap field parameter as

B(Si0, glass) = 1.37

which reproduces the index values to four
decimal places over the range p = 2.2 to 2.6.
Ritland [1955] obtained B = 0.5 for a borosili-
cate glass, in changing the density by heat
treatments. (It should be noted that literature
statements that the molar refraction of RiO,
class changes with compression [Cohen and
Roy, 1961, 1962, 1965; Vedam et al., 1966]
are based on defining the molar refraction ac-
cording to equation 3 or 4, ie. for an a priori
assumption as to the value of B, which, in fact,
does not mateh the data at zero pressure.)

COAPRESSIBILITY IDATA
The compressibility parameters have been
evaluated in the usual form
AV/Ve = —(aP — bP?) (5)

where AV = V — V¥, and the compressibility
(referred to V,) is k = a — 2bP. For diepside
the data of Bridgman on AV/V, at 25°C and
010 kb [Birch, 1966] were plotted as (AV/T5)
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(1/P) versus P and found to be linear; a and b
were obtained by the least-squares method. For
albite the data of Yoder at 25°C and 2-10 kb,
as tabulated by Birch, were converted to the
a and b form in equation 4. 3

Si0, data are available for the glass over
range of temperature. Both ¢ and b were plotted
versus ¢ (°C), and it was found that the data
fall into two groups, each of which gives a
highly linear plot for each parameter. The first
group includes the data of Birch and Law
[1935] and Birch and Dow [1936], who meas-
ured linear compression from 0 to 10 kb at
temperatures up to 390°C. A least-squares fit
to their data gives

10°a = 2.58 — 3.8 X 107% (6)
10°b = —34.1 + 6.7 X 107t (7)

with units of ¢°C and « in reciprocal bars and
with the values from the original references
(the data from these two papers are incorrectly
referenced in Birch [1966]). Older data by
Adams and Gibson, and Bridgman, measured
at room temperature (cited by Birch and Law
[1935]) agree with the more recent values of
Reitzel et al. [1957], who obtained similar linear
relationships by linear compression in the range
0-4 kb, 22°-259°C. Reitzel et al. obtained
coeflicients of 2.695 and —5.0 X 107 for the a
equation, and —22.7 and +4.2 X 107 for the b
equation. Both sets of data show the parameter
b changing sign with temperature, at 510°
(Birch) and 540°C (Reitzel); x increases with
pressure below this temperature and decreases
with pressure at higher temperatures. Also, both
sets of data show that the compressibility de-
creases with increasing temperature, in contrast
to the normal effect. The differences between
the two sets of data are not significant in the
present caleulations, and the data of Birch and
co-workers, as given by equations 6 and 7, were
used for extrapolation to hicher femperatures
(600°C") to obtain the 0- to 10-kb range com-
pressibility coefficients.

To calculate AV/V, at pressures above the
measurement range, the quadratic equation (35)
can be extrapolated. Generally, however, a better
extrapolation for erystalline compounds (e.z.,
quartz) and metals is obtained from the
Murnaghan logarithmie equation [Anderson,
1966], which can be written in terms of the




